Skip to content

Appendices

Working iPython notebook files for the processing of data relating to benchmarks and all raw data for the OEEF scanning sections can be found at GitHub. Due to the enormity of the undertaking, geometries have not been included and due to the enormity of their file sizes, PyMOL files have not been shared either, however both are available upon request.\(\newcommand{\va}{V\cdot\AA^{-1}}\newcommand{\eh}{E_h}\newcommand{\dc}{^\circ C}\newcommand{\kcalmol}{Kcal\cdot mol^{-1}}\newcommand{\kjmol}{KJ\cdot mol^{-1}}\)

A Raw data from the pathway benchmarking in Section 3.1

Table A.1: Raw \(\Delta G^{\circ}\) from the benchmarking of the reaction pathways in Section 3.1. The blank cells pertain to calculations that were not performed.

Pathway Energy (\(E_h\))
Reactant Transition State 1 Intermediate Transition State 2 Product
Non-activated -709.212961 -709.171714 -709.187604
Brønsted Acid 1 Barrierless -709.620615 -709.599167 -709.634264
Brønsted Acid 2 -786.010860 -709.596855 Barrierless -709.648273
Brønsted Base -785.166022 -708.726998 -708.701422 -708.755359
Lewis Acid Barrierless -1033.879641 -1033.855176 -1033.885971
Lewis Base Barrierless -960.453357 -960.453357 -960.483276

Table A.2: raw \(\Delta G^{\circ}\) of the species used top balance the reaction trajectories in Section 3.1

Additive Energy (\(E_h\))
\(\ce{H2O}\) -76.440078
\(\ce{H3O+}\) -76.830283
Piperidine -251.221244
\(\ce{BF3}\) -324.652124

Table A.3: Transition state imaginary frequencies and calculated transmission coefficients for the intermediate formation and cyclisation steps respectively, for the reaction pathways benchmarked in Section 3.1

Frequency 1 (\(cm^{-1}\)) \(\kappa_1\) Frequency 2 (\(cm^{-1}\)) \(\kappa_2\)
Brønsted Acid 1 Barrierless -382.40 1.157
Brønsted Acid 2 -1228.66 13.612 Barrierless
Brønsted Base -1200.35 1.185 -534.59 1.342
Lewis Acid Barrierless -427.78 1.202
Lewis Base Barrierless -548.23 1.365
PES scan of the Lewis acid (\(\ce{BF3}\)) attaching into 1, scanning along the \(\ce{O-B}\) bond length. PES scan of the Lewis base (\(\ce{piperidine-}\)) deprotonating the 1 amine, scanning along the amine \(\ce{N-H}\) bond length.
PES scan of the protonation of the ‘Brønsted acid 1’ pathway (1 \(\to\) 7) scanning along the forming \(\ce{O-H}\) bond length. PES scan of the cyclisation of the ‘Brønsted acid 2’ pathway (11 \(\to\) 4) scanning along the forming \(\ce{N-C}\) bond length.

Figure A.1: PES scans along the reaction coordinate for all barrierless steps in the various pathways.

B Raw data and reaction trajectories from Section 3.4

Table B.1: Raw \(\Delta G^\circ\), transition state imaginary frequencies, and tramsission coefficients for the benchmarks performed in Section 3.4

\(\vec F\) (\(\va\)) \(\Delta G\) Reactant (\(\eh\)) \(\Delta G\) Transition State (\(\eh\)) \(\Delta G\) Product (\(\eh\)) \(\bar\nu\) \(\kappa\)
Gas
None -708.898472 -708.838431 -708.840519 -472.60 1.243
0.1 (Catalytic) -708.898222 -708.841845 -708.845638 -434.69 1.210
0.1 (S anti-selective) -708.898075 -708.836571 -708.838916 -472.30 1.247
0.1 (S anti-selective) -708.898395 -708.839004 -708.840006 -472.70 1.166
Hexane
None -708.906434 -708.853442 -708.8 58711 -489.29 1.276
0.1 (Catalytic) -708.906599 -708.857667 -708.865868 -465.54 1.246
0.1 (S anti-selective) -708.906126 -708.851179 -708.857311 -487.68 1.274
0.1 (S anti-selective) -708.906126 -708.851179 -708.857311 -487.68 1.257
DCM
None -708.916525 -708.871672 -708.885508 -486.00 1.266
0.1 (Catalytic) -708.915264 -708.875421 -708.890046 -460.69 1.240
0.1 (S anti-selective) -708.914632 -708.867875 -708.879710 -484.81 1.271
0.1 (S anti-selective) -708.915696 -708.872193 -708.883006 -462.14 1.242
Ethanol
None -708.916180 -708.872721 -708.885927 -482.10 1.267
0.1 (Catalytic) -708.916826 -708.878676 -708.894984 -457.65 1.236
0.1 (S anti-selective) -708.916163 -708.870769 -708.884170 -486.67 1.273
0.1 (S anti-selective) -708.917107 -708.875217 -708.887664 -458.69 1.238
DMSO
None -708.916626 -708.873640 -708.887326 -480.16 1.264
0.1 (Catalytic) -708.917322 -708.879704 -708.896476 -456.87 1.235
0.1 (S anti-selective) -708.916525 -708.871672 -708.885508 -486.00 1.272
0.1 (S anti-selective) -708.916525 -708.871672 -708.885508 -486.00 1.235
Water
None -708.916820 -708.874020 -708.887956 -481.96 1.267
0.1 (Catalytic) -708.917509 -708.880107 -708.897132 -456.64 1.235
0.1 (S anti-selective) -708.916764 -708.872039 -708.886105 -486.57 1.273
0.1 (S anti-selective) -708.917400 -708.876558 -708.889680 -459.05 1.238

Figure B.1: Reaction trajectories for the relaxed benchmarks performed in Section 3.4

C Electron density difference maps of the derivatives discussed in Section 3.5

\(\ce{R1 = H, R2 = H}\)
\(F=\) S selective
\(\ce{R1 = H, R2 = H}\)
\(F=\) S anti-selective
\(\ce{R1 = H, R2 = NH2}\)
\(F=\) S selective
\(\ce{R1 = H, R2 = NH2}\)
\(F=\) S anti-selective
\(\ce{R1 = H, R2 = NO2}\)
\(F=\) S selective
\(\ce{R1 = H, R2 = NO2}\)
\(F=\) S anti-selective
\(\ce{R1 = NH2, R2 = H}\)
\(F=\) S selective
\(\ce{R1 = NH2, R2 = H}\)
\(F=\) S anti-selective
\(\ce{R1 = NH2, R2 = NH2}\)
\(F=\) S selective
\(\ce{R1 = NH2, R2 = NH2}\)
\(F=\) S anti-selective
\(\ce{R1 = NH2, R2 = NO2}\)
\(F=\) S selective
\(\ce{R1 = NH2, R2 = NO2}\)
\(F=\) S anti-selective
\(\ce{R1 = NO2, R2 = H}\)
\(F=\) S selective
\(\ce{R1 = NO2, R2 = H}\)
\(F=\) S anti-selective
\(\ce{R1 = NO2, R2 = NH2}\)
\(F=\) S selective
\(\ce{R1 = NO2, R2 = NH2}\)
\(F=\) S anti-selective
\(\ce{R1 = NO2, R2 = NO2}\)
\(F=\) S selective
\(\ce{R1 = NO2, R2 = NO2}\)
\(F=\) S anti-selective

Figure C.1: Electron density difference isosurfaces following an isovalue of 0.0002 for the optimal \(0.1\:\va\) S selective/S anti-selective OEEF directions for each of the derivatives, calculated at M06-2X/6-31+G*, solvated in CPCM ethanol. The red and blue isosurfaces represent regions of increased and decreased electron density respectively. The yellow arrow is a representation of the direction of the applied field vector.

D Raw data and reaction trajectories from Section 3.6

Figure D.1: Raw \(\Delta G^\circ\), transition state imaginary frequencies, and tramsission coefficients for the benchmarks performed in Section 3.6

\(\vec F\) (\(\va\)) \(\Delta G\) Reactant (\(\eh\)) \(\Delta G\) Transition State (\(\eh\)) \(\Delta G\) Product (\(\eh\)) \(\bar\nu\) \(\kappa\)
Non-derivatised (\(\ce{R1,R2=H}\))
None -708.916180 -708.872721 -708.885927 -482.10 1.267
0.1 (Catalytic) -708.916826 -708.878676 -708.894984 -457.65 1.236
0.1 (S anti-selective) -708.916163 -708.870769 -708.884170 -486.67 1.273
0.1 (S anti-selective) -708.917107 -708.875217 -708.887664 -458.69 1.238
0.2 (Catalytic) -708.913028 -708.876643 -708.903230 -431.65 1.207
0.2 (S anti-selective) -708.916849 -708.868621 -708.882899 -488.55 1.276
0.2 (S anti-selective) -708.918317 -708.877299 -708.890741 -436.64 1.212
Derivatised (\(\ce{R1,R2=NO2}\))
None -1117.798403 -1117.747859 -1117.759120 -511.75 1.308
0.1 (Catalytic) -1117.792269 -1117.752700 -1117.768354 -489.44 1.277
0.1 (S anti-selective) -1117.797376 -1117.744906 -1117.758071 -517.59 1.316
0.1 (S anti-selective) -1117.801593 -1117.745641 -1117.760201 -486.77 1.273
0.2 (Catalytic) -1117.787395 -1117.750533 -1117.775299 -443.38 1.220
0.2 (S anti-selective) -1117.795114 -1117.741251 -1117.757556 -527.43 1.331
0.2 (S anti-selective) -1117.803489 -1117.748212 -1117.761122 -484.36 1.27
Derivatised (\(\ce{R1,R2=NH2}\))
None -819.567938 -819.527946 -819.541147 -453.96 1.232
0.1 (Catalytic) -819.572619 -819.535792 -819.550188 -427.28 1.202
0.1 (S anti-selective) -819.569241 -819.526057 -819.540957 -463.67 1.244
0.1 (S anti-selective) -819.569181 -819.530218 -819.544841 -432.05 1.207
0.2 (Catalytic) -819.576743 -819.539267 -819.556151 -418.99 1.193
0.2 (S anti-selective) -819.570568 -819.525077 -819.541019 -468.29 1.249
0.2 (S anti-selective) -819.572210 -819.531785 -819.548810 -407.72 1.182

E Transition state geometries and reaction trajectories from the OEEF perturbed benchmarks in Section 3.6

Figure E.1: Reaction trajectories for the benchmarks performed in Section 3.6

\(\ce{R1,R2 = H}\)
\(\vec F=0.1\:\va\)
R selective
\(\ce{R1,R2 = H}\)
\(\vec F=0.1\:\va\)
S selective
\(\ce{R1,R2 = H}\)
\(\vec F=0.1\:\va\)
Catalytic
\(\ce{R1,R2 = H}\)
\(\vec F=0.2\:\va\)
R selective
\(\ce{R1,R2 = H}\)
\(\vec F=0.2\:\va\)
S selective
\(\ce{R1,R2 = H}\)
\(\vec F=0.2\:\va\)
Catalytic
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.1\:\va\)
R selective
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.1\:\va\)
S selective
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.1\:\va\)
Catalytic
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.2\:\va\)
R selective
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.2\:\va\)
S selective
\(\ce{R1,R2 = NO2}\)
\(\vec F=0.2\:\va\)
Catalytic
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.1\:\va\)
R selective
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.1\:\va\)
S selective
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.1\:\va\)
Catalytic
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.2\:\va\)
R selective
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.2\:\va\)
S selective
\(\ce{R1,R2 = NH2}\)
\(\vec F=0.2\:\va\)
Catalytic

Figure E.2: Transition state geometries and reaction trajectories from the OEEF perturbed benchmarks in Section 3.6

F Full theoretical choices, approximations and precision used throughout the project

Software Package Job type Functional Basis set Solvation Convergence criteria Integration grid Approximations Field
Pathway Benchmarking: low level opt
ORCA 5.0.11 Opt M062X6 aug-cc-pVTZ23 aug-cc-pVTZ/JK CPCM184 Ethanol Tightscf tightopt Defgrid3 RIJK19 No
Pathway Benchmarking: High level opt
ORCA 5.0.11 Opt ωB97M-V9 Def2-QZVPP10def2/j11 SMD5 Ethanol Verytightscf tightopt Defgrid3 RIJCosX12 No
Pathway Benchmarking: TS Searching NEB
ORCA 5.0.11 NEB-TS M062X6 aug-cc-pVTZ23 aug-cc-pVTZ/JK CPCM184 Ethanol Tightscf tightopt Defgrid3 RIJK19 No
Pathway Benchmarking: High level opt - TS
ORCA 5.0.11 OptTS ωB97M-V9 Def2-QZVPP10def2/j11 SMD5 Ethanol Verytightscf tightopt Defgrid3 RIJCosX12 No
Pathway Benchmarking: PES scanning
ORCA 5.0.11 SCAN ωB97M-V9 Def2-TZVPD10Def2/J11 SMD5 Ethanol Tightscf Defgrid2 RIJCosX No
Pathway Benchmarking: High level opt Frequencies
ORCA 5.0.11 Freq ωB97M-V9 Def2-QZVPP10Def2/j11 SMD5 Ethanol Verytightscf Defgrid3 RIJCosX12 No
Partial charge determination
Multiwfn 3.813 CHELPG20 charges based on the wavefunctions calculated above, using a grid density of \(0.1\:\AA\).
Multiwfn uses the LIBRETA21 package for evaluation of the electrostatic potential
Benchmarking barrier as a function of \(F_y\)
ORCA 5.0.11 Single Point M062X6 6-31+G(d)78 SMD5 Ethanol/none Standard Defgrid3 none Yes
Benchmarking R/S separation as a function of \(F_z\)
ORCA 5.0.11 Single Point M062X6 6-31+G(d)78 SMD5 Ethanol/none Standard Defgrid3 none Yes
Benchmarking catalysis/separation (\(F_y\)/\(F_z\)) as function of dielectric medium
ORCA 5.0.11 Single Point M062X6 6-31+G(d)78 CPCM184 varied Standard Defgrid3 none Yes
OEEF scans
Psi4 1.4151617 Opt M062X6 6-31+G(d)78 none Standard 590/99 none Yes
EDD isosurfaces
Psi4 1.4151617 SP M062X6 6-31+G(d)78 none/CPCM184 Standard 590/99 none Yes
Relaxed OEEF Solvent Benchmarking
ORCA 5.0.11 Opt NumFreq M062X6 6-31+G(d)78 CPCM184 varied Tightopt Defgrid3 none Yes/No
Derivative Efield scans
Psi4 1.4151617 Opt M062X6 6-31+G(d)78 CPCM184 Standard 590/99 none Yes
Point charge perturbation
ORCA 5.0.11 Single Point M062X6 6-31+G(d)78 none verytightscf Defgrid3 none Yes

  1. Neese, F. The ORCA Program System. WIREs Comput. Mol. Sci. 2012, 2 (1), 73–78. https://doi.org/10.1002/wcms.81

  2. Dunning, T. H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90 (2), 1007–1023. https://doi.org/10.1063/1.456153

  3. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron Affinities of the First‐row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96 (9), 6796–6806. https://doi.org/10.1063/1.462569

  4. Garcia‐Ratés, M.; Neese, F. Effect of the Solute Cavity on the Solvation Energy and Its Derivatives within the Framework of the Gaussian Charge Scheme. J. Comput. Chem. 2020, 41 (9), 922–939. https://doi.org/10.1002/jcc.26139

  5. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113 (18), 6378–6396. https://doi.org/10.1021/jp810292n

  6. Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120 (1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x

  7. Hehre, W. J.; Ditchfield, R.; Pople, J. A. Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56 (5), 2257–2261. https://doi.org/10.1063/1.1677527

  8. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R. Efficient Diffuse Function-Augmented Basis Sets for Anion Calculations. III. The 3-21+G Basis Set for First-Row Elements, Li–F. J. Comput. Chem. 1983, 4 (3), 294–301. https://doi.org/10.1002/jcc.540040303

  9. Mardirossian, N.; Head-Gordon, M. ΩB97M-V: A Combinatorially Optimized, Range-Separated Hybrid, Meta-GGA Density Functional with VV10 Nonlocal Correlation. J. Chem. Phys. 2016, 144 (21), 214110. https://doi.org/10.1039/C7CP04913G

  10. Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297. https://doi.org/10.1039/b508541a

  11. Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057–1065. https://doi.org/10.1039/B515623H

  12. Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, Approximate and Parallel Hartree–Fock and Hybrid DFT Calculations. A ‘Chain-of-Spheres’ Algorithm for the Hartree–Fock Exchange. Chem. Phys. 2009, 356 (1–3), 98–109. https://doi.org/10.1016/j.chemphys.2008.10.036

  13. Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33 (5), 580–592. https://doi.org/10.1002/jcc.22885

  14. Markland, T. E.; Ceriotti, M. Nuclear Quantum Effects Enter the Mainstream. Nat. Rev. Chem. 2018, 2 (3), 0109. 

  15. Parrish, R. M.; Burns, L. A.; Smith, D. G. A.; Simmonett, A. C.; DePrince, A. E.; Hohenstein, E. G.; Bozkaya, U.; Sokolov, A. Y.; Di Remigio, R.; Richard, R. M.; Gonthier, J. F.; James, A. M.; McAlexander, H. R.; Kumar, A.; Saitow, M.; Wang, X.; Pritchard, B. P.; Verma, P.; Schaefer, H. F.; Patkowski, K.; King, R. A.; Valeev, E. F.; Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13 (7), 3185–3197. https://doi.org/10.1021/acs.jctc.7b00174

  16. Turney, J. M.; Simmonett, A. C.; Parrish, R. M.; Hohenstein, E. G.; Evangelista, F. A.; Fermann, J. T.; Mintz, B. J.; Burns, L. A.; Wilke, J. J.; Abrams, M. L.; Russ, N. J.; Leininger, M. L.; Janssen, C. L.; Seidl, E. T.; Allen, W. D.; Schaefer, H. F.; King, R. A.; Valeev, E. F.; Sherrill, C. D.; Crawford, T. D. Psi4: An Open-Source Ab Initio Electronic Structure Program. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (4), 556–565. https://doi.org/10.1002/wcms.93

  17. Smith, D. G. A.; Burns, L. A.; Simmonett, A. C.; Parrish, R. M.; Schieber, M. C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.; Alenaizan, A.; James, A. M.; Lehtola, S.; Misiewicz, J. P.; Scheurer, M.; Shaw, R. A.; Schriber, J. B.; Xie, Y.; Glick, Z. L.; Sirianni, D. A.; O’Brien, J. S.; Waldrop, J. M.; Kumar, A.; Hohenstein, E. G.; Pritchard, B. P.; Brooks, B. R.; Schaefer, H. F.; Sokolov, A. Y.; Patkowski, K.; DePrince, A. E.; Bozkaya, U.; King, R. A.; Evangelista, F. A.; Turney, J. M.; Crawford, T. D.; Sherrill, C. D. Psi4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152 (18), 184108. https://doi.org/10.1063/5.0006002

  18. Klamt, A.; Schüürmann, G. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, No. 5, 799–805. https://doi.org/10.1039/P29930000799

  19. Weigend, F.; Kattannek, M.; Ahlrichs, R. Approximated Electron Repulsion Integrals: Cholesky Decomposition versus Resolution of the Identity Methods. J. Chem. Phys. 2009, 130 (16), 164106. https://doi.org/10.1063/1.3116103

  20. Breneman, C. M.; Wiberg, K. B. Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. J. Comput. Chem. 1990, 11 (3), 361–373. https://doi.org/10.1002/jcc.540110311

  21. Zhang, J. Libreta: Computerized Optimization and Code Synthesis for Electron Repulsion Integral Evaluation. J. Chem. Theory Comput. 2018, 14 (2), 572–587. https://doi.org/10.1021/acs.jctc.7b00788