Skip to content

Atomic Partition Functions

Boltzmann Probability

Boltzmann came up with two big equations, where \(W=\) number of microstates and \(R=\) gas constant

\[ \begin{gather} S=k_B\ln W\\ R=k_BN_A \end{gather} \]

Partition Function

Fundamental postulate of statistical thermodynamics

The Expectation value \(\big\langle x\big\rangle\) is an average over possible values

Is an effective measure of the “accessible number of energy states”

Where:

  • \(N=\) Number of molecules
  • \(V=\) Volume
  • \(T=\) Temperature
  • \(E_j=\) Energy of the microstate
\[ \begin{matrix} Q(N,V,T)=\sum\limits_j^{\text{states}}e^{-\beta E_j(N,V)}:& \hskip{1cm}\beta=\frac{1}{k_BT}\\ or\\ Q(N,V,T)=\sum\limits_j^{\text{states}}\exp\bigg(\frac{-E_j(N,V)}{k_BT}\bigg) \end{matrix} \]

Note

This is the theoretical backing of the FPD

So we can calculate the expectation value of energy fro the partition function

Where:

  • \(\big\langle E\big\rangle=\) Expectation energy of the system
\[ \begin{matrix} \big\langle E\big\rangle=\sum\limits_j\frac{E_j(N,V)e^{-\beta E_j(N,V)}}{Q(N,V,\beta)}:& \hskip{1cm}\beta=\frac{1}{k_BT}\\ \hskip{1.7cm}or\\ \big\langle E\big\rangle=\sum\limits_j\frac{E_j(N,V)\exp\bigg(\frac{-E_j}{k_BT}\bigg)}{Q(N,V,T)} \end{matrix} \]

Ensemble Partition Function

The canonical partition function is based on the sum of molecular partition functions \(q(V,T)\)

\[ \begin{align} Q(N,V,T)&=\sum\limits_i\exp\bigg(\frac{-[\sum_j\epsilon_j(V)]_i}{k_BT}\bigg)\\ &=\frac{[q(V,T)]^N}{N!} \end{align} \]

Molecular Partition Function

Info

More info can be found on WikiBooks

Since we already calculated the total energy of a molecule, we can build a molecular partition function from the energy of all the possible energy levels

\[ \begin{align} q(V,T)&=\sum\limits_i\exp\bigg(\frac{-(\epsilon_{trans}+\epsilon_{rot}+\epsilon_{vib}+\epsilon_{elec})_i}{k_BT}\bigg)\\ &=\sum\limits_i\exp\bigg(\frac{-\epsilon_{trans,i}}{k_BT}\bigg) \sum\limits_j\exp\bigg(\frac{-\epsilon_{rot,j}}{k_BT}\bigg) \sum\limits_k\exp\bigg(\frac{-\epsilon_{vib,k}}{k_BT}\bigg) \sum\limits_l\exp\bigg(\frac{-\epsilon_{elec,l}}{k_BT}\bigg) \end{align} \]

To avoid counting degenerate states, we can use the energy levels, instead of the energy states and multiply by the number of degenerate states. Given the degeneracy of rotational states \(\mathrm{g}_J=2J+1\)

\[ \begin{align} q_{rot}(V,T)&=\sum\limits_{j,states}e^{-\beta\epsilon_j}=e^{-E_{j=0}/k_BT}+e^{-E_{j=1}/k_BT}+e^{-E_{j=1}/k_BT}+e^{-E_{j=1}/k_BT}+...\\ q_{rot}(V,T)&=\sum\limits_{j,levels}\mathrm{g}_je^{-\beta\epsilon_j}=1e^{-E_{j=0}/k_BT}+3e^{-E_{j=1}/k_BT}+... \end{align} \]