Solubility Equilibria¶
- Molar Solubility (\(mol \cdot L^{−})\)
- Solubility \(g L^{−1}\)
\(K_{sp} =\) solubility product
Written as equilibrium equation with \(K_{sp}\) as reactants¶
\[
K_{sp} = \frac{[\ce{Ca}^{2+}]} {[\ce{F−}]^2}
\]
\(K_{sp}\) values determine the solubility of a compound in water under specified conditions As \(K_{sp}\) increases, so does solubility
\(K_{sp}\) | \(<<10^{-5}\) | \(10^{-5} \text{ to } 10^{-2}\) | \(>10^{-2}\) |
---|---|---|---|
Solubility | Practically Insoluble | Slightly Soluble | Soluble |
Calculating the dissociation amount¶
- Reaction
\[
\hskip{1cm}\ce{Cr(OH)3 <=> Cr^{3+} + 3OH−}
\]
- ICE
\[
\begin{gather}
Initial\hskip{2.3cm}0\hskip{1cm}0\\
Change\hskip{2.1cm}S\hskip{1cm}3S\\
Equilibrium\hskip{1.4cm}S\hskip{1cm}3S
\end{gather}
\]
- Substitute
\[
\begin{align}K_{sp}&=\ce{[Cr^{3+}][OH−]^3}\\
K_{sp}&=(s)(3s)^3\\
K_{sp}&=(s)(27s^3)\\
K_{sp}&=27s^4\end{align}
\]
- Rearrange and solve for s (given stock \(K_{sp}\) values)
\[
\begin{align}K_{sp}&=3.0\times10^{−29}\\
\frac{K_{sp}}{27}&=s^4\\
\bigg[\frac{K_{sp}}{27}\bigg]^{1/4}&=s\\
\bigg[\frac{3.0×\times10^{−29}}{27}\bigg]^{1/4}&=s\\
3.5\times10^{−8} M&=s\\
\end{align}
\]
Will Precipitation Occur¶
To determine if Precipitation will occur, first calculate \(Q_{sp}\) (the \(K_{sp}\) of the current conditions)
- If \(K_{sp}< Q_{sp}\) Precipitate Wil Form - Too much in solution
- If \(K_{sp}> Q_{sp}\) No Precipitation - Solution can hold more of the compound
- If \(K_{sp}= Q_{sp}\) Already at equilibrium - No Change
Converting these into masses¶
Determining the concentration of the solution and the volume of the solution will give us the number of moles
E.g. Determining #moles
\[
250\:mL \text{ of } 3.5\times10^{−8} \:M \text{ solution}
\]
\[
\begin{align}n&=cv\\\
n&=(3.5\times10^{−8})\times 0.250\\
n&=8.8\times10^{−9}\:mol\end{align}
\]
Determining mass:
\[
\begin{align}\ce{Cr(OH)3}&=103.024\:au\\
m&=nM\\
m&=(8.8\times10^{−9})×\times 103.024\\
m&=9.1\times10^{−7} \:g\end{align}
\]